Designing Decentralized Controllers for Distributed-Air-Jet MEMS-Based Micromanipulators by Reinforcement Learning
نویسندگان
چکیده
Distributed-air-jet MEMS-based systems have been proposed to manipulate small parts with high velocities and without any friction problems. The control of such distributed systems is very challenging and usual approaches for contact arrayed system don’t produce satisfactory results. In this paper, we investigate reinforcement learning control approaches in order to position and convey an object. Reinforcement learning is a popular approach to find controllers that are tailored exactly to the system without any prior model. We show how to apply reinforcement learning in a decentralized perspective and in order to address the global-local trade-off. The simulation results demonstrate that the reinforcement learning method is a promising way to design control laws for such distributed systems.
منابع مشابه
An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملDistributed Learning for Controlling Modular Robots
What: Recently there has been an important research effort into modular, distributed robotics and in particular, self-reconfiguring robotics [2, 5, 8]. Issues with designing controllers for such systems range from constructing motor control primitives to ensuring cooperation between modules. For simpler tasks, such as locomotion in one direction, hand design is easy. However, as modular robots ...
متن کاملAutomated Design of Adaptive Controllers for Modular Robots using Reinforcement Learning
Designing distributed controllers for self-reconfiguring modular robots has been consistently challenging. We have developed a reinforcement learning approach which can be used both to automate controller design and to adapt robot behavior on-line. In this paper, we report on our study of reinforcement learning in the domain of self-reconfigurable modular robots: the underlying assumptions, the...
متن کاملDistributed reinforcement learning for self-reconfiguring modular robots
In this thesis, we study distributed reinforcement learning in the context of automating the design of decentralized control for groups of cooperating, coupled robots. Specifically, we develop a framework and algorithms for automatically generating distributed controllers for self-reconfiguring modular robots using reinforcement learning. The promise of self-reconfiguring modular robots is that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 59 شماره
صفحات -
تاریخ انتشار 2010